Optical coherence tomography (OCT) is an intravascular imaging modality that uses the reflection of near-infrared light to generate an image. OCT was first described more than 2 decades ago when it was used to image the peripapillary area of the human retina in vitro (1). Eleven years later, OCT was used to image atherosclerotic plaques in human coronary arteries (2). The image resolution achievable with OCT (axial: 10 μm, lateral: 20 to 40 μm) far surpasses that of intravascular ultrasound (IVUS) (100 to 200 μm). Histological studies have shown that certain adverse plaque phenotypes are associated with the onset of an acute coronary syndrome (ACS) (3). With its excellent spatial resolution, OCT is ideally placed to identify vulnerable plaque that could result in ACS.

This review describes the technology underlying OCT, its potential for identifying vulnerable plaques in ACS, and its limitations.

OCT TECHNOLOGY

To generate an image, a low-coherence, near-infrared (wavelength of 1.3 μm) light source is directed at the tissue (Figure 1). The light beam is split into 2 arms, a sample arm and a reference arm, by an interferometer. The reference arm is directed to a mirror, which reflects the light directly back to the interferometer. The light of the sample arm is absorbed, refracted, or reflected from the sample tissue, scattering the light at large angles from its surface and sub-surface. Reflected light travels back to the interferometer and...
interacts with the reference arm light. The interaction between these 2 light waves determines the OCT image, depending on whether there is constructive or destructive interference between the waves (1). Because red blood cells strongly scatter the light waves and hence attenuate the image, OCT requires a bloodless field. The OCT catheter is connected to a rotary junction, which uses a motor to rotate the optical fiber in the catheter and couples light from this rotating fiber to light from the reference arm. The rotary junction is mounted to an automated pullback device, thus scanning the artery in a helical fashion.

There are 2 types of OCT systems: time domain (Figure 1A) and frequency domain (Figure 1B). The first-generation time domain—OCT system required sequential measurement of optical echoes from different depths by moving the reference mirror (4). This initially required the use of a balloon to occlude coronary blood flow, and the slow pullback speed of 1 to 5 mm/s led to image acquisition times of 3 to 45 s (4). Subsequently, a blood-free imaging field was obtained by controlled intracoronary infusion of isosmolar contrast, negating the need for an occlusive balloon (5). This reduced the procedure time, although the length of the analyzed segments of artery were shorter (5). Second-generation frequency domain—OCT systems use a light source that is rapidly swept in time across wavelengths from 1.25 to 1.35 μm, allowing simultaneous recording of reflections from different depths without movement of the reference mirror (6). Depth profiles are then reconstructed by Fourier transformation. This speeds up image acquisition 10-fold, with achievable pullback speeds of up to 40 mm/s and imaging runs of up to 150 mm in length with a 3- to 5-s flush of saline or contrast, without the need for prolonged vessel occlusion (6).

OCT IMAGE FEATURES. The normal coronary artery is seen as a 3-layered structure on OCT (Figure 2A) (7). The internal elastic lamina appears as a signal-rich 20-μm-thick band that lies inside the dark band of the media and the further signal-rich band of the external elastic lamina (7). An atherosclerotic lesion is seen on OCT as a mass lesion within the arterial wall, with focal intimal thickening or loss of the normal vessel architecture (8). Fibrous plaque produces a relatively homogenous and highly backscattering signal (8) (Figure 2B). Calcified plaques appear as a signal-poor area with sharply delineated borders (Figure 2C). However, this only applies to larger regions of calcification; smaller areas and microcalcifications have yet to be validated against histology (8). Necrotic core (and the broader histopathological category of a lipid pool) is seen as a signal-poor region with poorly defined borders and fast OCT signal drop-off (Figure 2D) (8). Because light does not penetrate through these areas, OCT cannot be used to measure the depth or volume of lipid pools. Macrophage accumulations can sometimes be seen at the border of the fibrous cap and necrotic core, and can appear as punctate signal-rich spots that exceed the background noise of the image (8). Cholesterol crystals are linear regions of high intensity, often associated with a lipid pool (Figure 3C) (8). OCT can differentiate between white and red thrombus (Figure 4) due to the high proportion of red blood cells in red thrombi, which causes greater attenuation of the OCT signal and a lower half-width (the distance from peak signal intensity to its half-intensity). Kume et al. (9) showed that a cutoff of 250 μm in the half-width could accurately discriminate between white and red thrombus with a sensitivity of 90% and a specificity of 88%.

HISTOLOGICAL VALIDATION OF OCT. OCT was first validated for plaque characterization in vitro in 2002 (10). Agreement between the histopathological and OCT findings were high (κ = 0.83 to 0.84), and interobserver and intraobserver reliability were good (κ = 0.88 and κ = 0.91, respectively) (10). However, there were a number of false-negative diagnoses of lipid pools, which could be attributed to the limited penetration of OCT, leading to deep lipid pools being misinterpreted as fibrous plaques. Intimal thickness measured by OCT also correlated well with histology (r = 0.98, p < 0.001) (11). However, OCT images are prone to artifacts; 30.9% of images contained artifacts in a study, although this improved with operator experience (12). Seam-line artifacts cause apparent breaks in the lumen contour on the cross-sectional image (6.0% of images); decentration artifacts are caused by eccentric positioning of the imaging catheter within the artery and lead to image attenuation in remote structures (30.9%); caliber artifacts are caused by an arterial diameter greater than the penetration limit of the OCT and are a particular problem in vein grafts and in the left main stem (13) (15.0%); and flow artifacts are caused by failure to clear blood from either the vessel or imaging catheter by flushing (19.6%) (12).

OCT AND VULNERABLE PLAQUES

DEFINITION OF THIN-CAP FIBROATHEROMA. Histopathological studies have identified anatomical characteristics of “vulnerable” plaques that are...
implicated in the pathophysiology of ACS. These plaques, which are prone to rupture, have fibrous caps that are thinned and rich in macrophages overlying a lipid pool (14). A previous study examined the hearts of 113 men that died suddenly, of which 41 had acute coronary artery thrombosis secondary to rupture of an atherosclerotic plaque, and 95% of these subjects had plaques with fibrous caps <65-μm thick (mean thickness, 23 ± 19 μm) with an infiltrate of macrophages (15), subsequently termed thin-cap fibroatheroma (TCFA) (16). Due to the high image resolution with OCT, it is well placed to identify these high-risk plaques in vivo (Figure 5). However, there is still debate over the exact definition of a TCFA on OCT (OCT-TCFA) because histological specimens of TCFA differ from OCT images (likely due to shrinkage of pathological specimens). Using a cutoff of 70 μm (as the axial resolution of OCT is >10 μm), only 67% of ruptured plaques in 1 study of 72 patients with ACS were defined as having a thin fibrous cap (17). Therefore, it is possible that the fibrous cap of a TCFA is thicker in vivo than on histology. There is a higher proportion of lipid-rich plaque on OCT in patients with ACS compared with stable angina (18), and some studies have used an additional parameter to define a TCFA: that the arc of the lipid pool should subtend an
angle $>90^\circ$ (8). However, there is no consensus on the exact cutoff value for the fibrous cap or arc of lipid pool for the identification of an OCT-TCFA, only that the definition of an OCT-TCFA should reflect the histological definition of a TCFA (8).

TCFA IN ACS. TCFAs are more common in patients with an acute or unstable clinical presentation than stable angina pectoris patients. A comparison of 26 acute ST-segment elevation myocardial infarction (STEMI) patients with 16 stable angina patients showed that STEMI patients had a higher proportion of OCT-TCFA in the culprit lesion (85% vs. 13%, $p < 0.001$) and a thinner fibrous cap (57 ± 12 μm vs. 180 ± 65 μm, $p < 0.001$) (19). Patients with STEMI also had a higher prevalence of OCT-TCFA compared with patients with non-ST-segment elevation ACS (78% vs. 49%, $p = 0.008$) (20). Similar results have been shown in patients with unstable angina compared to patients with stable angina (incidence of OCT-TCFA 81% vs. 47%, $p = 0.002$; fibrous cap thickness of 56 ± 20 μm vs. 75 ± 30 μm, $p < 0.001$) (21). Patients with ACS also have a higher proportion of OCT-TCFA and thinner fibrous caps than found in non-ACS patients (19,22). In patients with ACS, OCT-TCFAs are more commonly found in the proximal segments of the culprit vessel (23,24). OCT has been used to confirm findings from histological studies that plaque rupture of TCFA occurs more often away from the site of minimum lumen area in patients with STEMI and non-STEMI (mean distance of site of rupture from minimum lumen area = 2.34 ± 2.31 mm) (25).

Atherosclerotic lesions are dynamic, and there is evidence from IVUS studies that TCFAs can transform into other plaque types and vice versa. A study of nonculprit lesions in patients with STEMI showed that 9 of 41 TCFAs identified by virtual histology-IVUS had healed into more stable lesions at 13-month follow-up, but 21 of 57 other lesions had transformed into TCFAs (26). However, in a study evaluating bifurcation lesions with both OCT and virtual histology-IVUS, 83% of high-risk plaques remained unchanged at 6 months (27). Further serial OCT studies are required to investigate the natural history of these vulnerable plaques in patients with ACS.

FIGURE 2 OCT Image Examples of Plaque Composition

(A) Composition of the normal coronary artery, with white arrows depicting the internal elastic lamina, media and external elastic lamina. (B) Concentric fibrous plaque. (C) Calcified plaque. (D) Necrotic core. *Guidewire artifact. Abbreviation as in Figure 1.
EFFECTS OF THERAPY ON TCFA. Methods to stabilize these vulnerable TCFA have been assessed using serial OCT studies. Patients who underwent statin therapy had an increased cap thickness of OCT-TCFA compared with patients who were not being administered statins (an increase of $192 \pm 41 \mu m$ vs. $25 \pm 8 \mu m$, $p < 0.001$) at 9 months post-ACS study (28). In a prospective study of 42 patients with stable angina, statin therapy resulted in an increase in fibrous cap thickness when compared with dietary modification alone ($+52 \pm 32 \mu m$ vs. $2 \pm 22 \mu m$, $p < 0.001$) (29).

Another study enrolled 30 patients (56.6% with ACS) with untreated dyslipidemia and OCT-TCFA on baseline imaging, and randomized them to either statin therapy alone or statin + eicosapentaenoic acid (30). Despite similar levels of low-density lipoprotein at follow-up examination, those who received eicosapentaenoic acid had a greater increase in fibrous cap thickness ($54.8 \pm 27.9 \mu m$ vs. $23.5 \pm 11.6 \mu m$, $p < 0.0001$) (30). However, it remains to be seen whether stabilizing these plaques actually improves clinical outcomes.
RUPTURED PLAQUES. Ruptured plaques with thrombus have thinner fibrous caps than those without thrombus (57 ± 17 μm vs. 96 ± 48 μm, p = 0.0076) (31). Intracoronary thrombus is well visualized by OCT and is almost universally found in STEMI (19). However, care must be taken with interpretation of these results, as overlying thrombus may interfere with OCT characterization of the lesion, and performing thrombus aspiration before OCT imaging may alter the underlying plaque anatomy. Patients with ACS caused by ruptured culprit plaques are more likely to have nonculprit plaques with a higher lipid index (mean lipid arc multiplied by lipid length measured in the longitudinal view: 1,196.9 ± 700.5 vs. 747.7 ± 377.3, p = 0.001), higher incidence of OCT-TCFA (52.9% vs. 19.0%, p = 0.029), and thinner fibrous caps (107.0 ± 56.5 mm vs. 137.3 ± 69.8 mm, p = 0.035) on OCT than those with nonruptured culprit plaques (32). Patients with ruptured culprit plaques were also more likely to have secondary, nonculprit plaques ruptures (35.3% vs. 4.8%, p = 0.016) (32). This suggests that these patients have increased pan-coronary vulnerability and may be at higher risk of future adverse events. In addition, plaque ruptures in patients with ACS differ from those found in patients with asymptomatic coronary artery disease with a greater lipid arc (171 ± 71° vs. 133 ± 71°, p = 0.037), higher incidence of thrombus (78% vs. 9%, p < 0.001), and a smaller minimum lumen area of the culprit lesion (1.79 ± 0.92 mm vs. 2.75 ± 0.99 mm, p < 0.001), suggesting that the morphology of the plaque rupture may influence whether it heals asymptomatically or causes an adverse cardiovascular event (33).

PLAQUE EROSION. In contrast to plaque rupture, plaque erosion is characterized by luminal thrombus and absence of the endothelium, without evidence of fibrous cap disruption (3). In 1 histological study, erosions were responsible for more than 40% of thrombotic sudden cardiac deaths and were more prevalent in women (14). Although OCT does not have the resolution necessary to identify the absence of the endothelium, OCT-identified plaque erosion has been defined as the presence of thrombus and an irregular luminal surface in the absence of cap rupture (8). In a cohort of patients with STEMI (n = 30), plaque erosions were more often found by OCT than by IVUS or angioscopy (23% vs. 3% vs. 0%, p = 0.003) (34). In a previous study, OCT was performed in 126 patients with ACS and showed plaque rupture in 43.7%, erosions in 31%, and calcified nodules in 7.9% (35). Plaque erosions were more commonly observed in younger patients (53.8 ± 13.1 years vs. 60.6 ± 11.5 years, p = 0.005), and were more commonly associated with non-STEMI than STEMI (61.5% of patients with non-STEMI had a plaque erosion vs. 29.1% of STEMI patients, p = 0.008). Patients with plaque erosion had a less severe diameter culprit stenosis (55.4 ± 14.7% vs. 68.8 ± 12.9%, p < 0.001) (35). Plaque erosion on OCT was associated with a higher level of serum myeloperoxidase, a hemoprotein released on neutrophil activation, than plaque rupture (2,500 ng/ml vs. 707 ng/ml, p = 0.001) (36).

Prati et al. (37) performed OCT after thrombus aspiration in patients with STEMI and followed up 31 patients with plaque erosion for 1 year. Twelve
patients were managed with thrombus aspiration only, and 19 had thrombus aspiration plus angioplasty. There were no significant differences in outcomes (death, myocardial infarction, and target vessel revascularization) between the groups (37). Although this study raised the possibility of using OCT to influence the management of patients with ACS, this study is limited in that it consisted of too small a sample size to draw definitive conclusions, and treatment was not randomized (patients managed conservatively were younger and had fewer cardiac risk factors).

PLAQUES WITH CALCIFIED NODULES. Plaques with superficial calcified nodules are also considered prone to rupture (16,38). The pattern of plaque calcification on OCT was evaluated in 187 patients with acute myocardial infarction and unstable and stable angina. Patients with acute myocardial infarction and unstable angina had less overall calcium (measured by arc, area, and length, \(p < 0.001 \) for all measurements) than those with stable angina, but were more likely to have spotty calcium deposits closer to the surface of the plaque (39). The incidence of calcified nodules in ACS in 1 study was 8%, but was more common with increasing age (35). However, the accuracy of OCT in identifying smaller areas of calcification has also yet to be validated against histology (8).

MACROPHAGE INFILTRATION AND MICROCHANNEL FORMATION. The resolution of OCT may allow identification of macrophages within an atherosclerotic plaque. In ACS patients, a higher prevalence of macrophage infiltration in nonculprit plaques was found compared with non-ACS patients (82.4% vs. 37.9%, \(p = 0.001 \)) (22). A study of diabetic patients also found those with poorly controlled diabetes (glycated hemoglobin \(\geq 8\% \)) had greater macrophage infiltration than nondiabetic patients or well-controlled diabetic patients (37.9% vs. 11.0%, \(p = 0.037 \)) (40). Plaques that exhibited an increase in luminal stenosis over time were more likely to have higher numbers of macrophages (odds ratio [OR]: 9.6, \(p = 0.001 \), TCFA [OR: 20, \(p < 0.001 \)], intimal laceration [OR: 10.2, \(p < 0.001 \)], and/or microchannels [OR: 20, \(p < 0.001 \)] (41). Plaque neovascularization and microchannel formation (Figure 6) are known to be markers of plaque vulnerability and rupture, as well as intraplaque hemorrhage, which can contribute to plaque progression (42). Patients with microchannels in the culprit lesion were more likely to have presented with unstable than stable angina (83% vs. 17%), have a thinner fibrous cap (60 \(\mu \text{m} \) vs. 100 \(\mu \text{m} \), \(p = 0.001 \)), and have a trend towards a higher incidence of plaque rupture (50% vs. 28%, \(p = 0.11 \)) (43).

DIFFERENT IMAGING MODALITIES

COMPARISON WITH OTHER INTRAVASCULAR MODALITIES

Table 1 shows the properties of the different available clinical intravascular imaging modalities. A combination of these imaging techniques may provide a more detailed and complete visualization of plaque pathology.

INTRAVASCULAR ULTRASOUND. Because of its greater resolution and obligatory flushing and blood clearing, OCT is more accurate than either IVUS or quantitative coronary angiography in determining luminal dimensions (44). Frequency domain OCT provides more accurate measurement of the minimal lumen area than either IVUS or quantitative coronary angiography in both phantom models and in vivo (\(r^2 = 0.95, p < 0.001 \), mean difference 0.41 \(\text{mm}^2 \)) with good intra- and interobserver reproducibility (\(r^2 = 0.999, p < 0.001 \), mean difference 0.01 \(\text{mm}^2 \)) (44). Virtual histology–IVUS cannot visualize the fibrous cap but can quantify the necrotic core of the plaque (Figure 5C) (45). Virtual histology–IVUS was shown to have acceptable sensitivity (89%) and specificity (86%) in identifying TCFA compared with OCT (46). A hybrid IVUS–OCT catheter has been developed and simultaneously provides both the resolution and penetration required to identify and quantify TCFA (47,48).
A hybrid NIRS-OCT catheter is in development, and a necrotic core, which can often be misinterpreted on and can help discriminate between calcium and other remodeling, and lipid index measured by the catheter with OCT showed that plaque burden, positive predictive value (53). A comparison using a hybrid NIRS-IVUS fractional flow reserve to ascertain whether a combined OCT and OCT-TCFA (52). A comparison using a hybrid NIRS-IVUS fractional flow reserve. The ILUMIEN I study is currently recruiting to ascertain whether a combined OCT and fractional flow reserve device aids periprocedural decision making that may have an impact on patient outcomes (49).

NEAR-INFRARED SPECTROSCOPY. Near-infrared spectroscopy (NIRS) can only quantify the lipid content of the plaque, but the signal can pass through calcium and accurately quantify lipid behind this (50). NIRS provides only compositional information regarding the plaque, but does not require a bloodless field (51) and can help discriminate between calcium and necrotic core, which can often be misinterpreted on OCT (52). A comparison using a hybrid NIRS-IVUS catheter with OCT showed that plaque burden, positive remodeling, and lipid index measured by the hybrid catheter were associated with OCT-TCFA (53). A hybrid NIRS-OCT catheter is in development, and a proof-of-concept demonstration has been published, successfully imaging a 3-cm section of 1 human coronary artery ex vivo to provide simultaneous structural and compositional information (54).

3-DIMENSIONAL RECONSTRUCTION. As the technology of OCT becomes more refined and image acquisition faster, it has become possible to perform 3-dimensional reconstructions of the coronary anatomy by fusing x-ray and OCT data (55,56). This allows assessment of local hemodynamic flow patterns and hence the effects of endothelial shear stress on the risk of plaque progression and rupture (57). Three-dimensional IVUS studies have shown that localized elevation of shear stress is correlated with the plaque rupture site in patients with ACS (κ = 0.79) (58). However, this has not yet been studied using OCT.

NONINVASIVE IMAGING. Noninvasive techniques such as positron emission tomography–computed tomography have been used to identify vulnerable plaques and correlate with high-risk features on virtual histology–IVUS. In 40 patients with stable angina, high 18F-sodium fluoride uptake (postulated to be a marker of plaque activity) correlated with virtual histology–IVUS features such as microcalcification (73% vs. 21%, p = 0.002) and higher mean necrotic core (24.6 vs. 18.0, p = 0.001), which may be markers of plaque vulnerability, and there was a nonsignificant trend towards a higher prevalence of TCFA in 18F-sodium fluoride positive plaques (47% vs. 16%, p = 0.068) (59). However, these noninvasive techniques lack the spatial resolution of OCT, and it has not yet been investigated whether OCT can complement the data obtained from positron emission tomography–computed tomography.

OTHER APPLICATIONS OF OCT.

NEOATHEROSCLEROSIS. The advent of OCT has allowed in vivo imaging of conditions that were

TABLE 1 Comparison of the Physical Properties of Different Modalities of Intravascular Imaging

<table>
<thead>
<tr>
<th>Modality</th>
<th>OCT</th>
<th>IVUS</th>
<th>Near-Infrared Spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy source</td>
<td>Infrared</td>
<td>Ultrasound</td>
<td>Near-infrared</td>
</tr>
<tr>
<td>Wavelength (μm)</td>
<td>1.3</td>
<td>35-80</td>
<td>0.8-2.5</td>
</tr>
<tr>
<td>Penetration (mm)</td>
<td>1-2.5</td>
<td>10</td>
<td>1-2</td>
</tr>
<tr>
<td>Resolution (μm)</td>
<td>20-40</td>
<td>100-200</td>
<td>NA</td>
</tr>
<tr>
<td>Pullback speed (mm/s)</td>
<td>10-40</td>
<td>0.5-1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

IVUS = intravascular ultrasound; NA = not available; OCT = optical coherence tomography.

TABLE 2 Summary of Studies Comparing FFR and OCT

<table>
<thead>
<tr>
<th>First Author, Year (Ref. #)</th>
<th>Lesions Assessed</th>
<th>Type of OCT</th>
<th>FFR</th>
<th>MLA Cutoff</th>
<th>Positive Predictive Value</th>
<th>Negative Predictive Value</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zafar et al., 2014 (88)</td>
<td>N = 41 >30% stenosis</td>
<td>FD-OCT</td>
<td><0.80</td>
<td><1.62 mm²</td>
<td>89%</td>
<td>91%</td>
<td>97%</td>
<td>70%</td>
</tr>
<tr>
<td>Reith et al., 2013 (89)</td>
<td>N = 62 40%-70% stenosis Diabetic patients</td>
<td>FD-OCT</td>
<td><0.80</td>
<td><1.59 mm²</td>
<td>80.6%</td>
<td>74.2%</td>
<td>75.8%</td>
<td>79.3%</td>
</tr>
<tr>
<td>Pyxaras et al., 2013 (90)</td>
<td>N = 55 30%-50% stenosis</td>
<td>FD-OCT</td>
<td><0.80</td>
<td><2.88 mm²</td>
<td>Not reported</td>
<td>Not reported</td>
<td>73%</td>
<td>71%</td>
</tr>
<tr>
<td>Pawlowski et al., 2013 (91)</td>
<td>N = 48 40%-70% stenosis</td>
<td>Non-occlusive TD-OCT</td>
<td><0.80</td>
<td><2.05 mm²</td>
<td>Not reported</td>
<td>Not reported</td>
<td>75%</td>
<td>90%</td>
</tr>
<tr>
<td>Gonzalez et al., 2012 (92)</td>
<td>N = 61 40%-70% stenosis</td>
<td>FD-OCT</td>
<td><0.80</td>
<td><1.95 mm²</td>
<td>66%</td>
<td>80%</td>
<td>83%</td>
<td>63%</td>
</tr>
<tr>
<td>Shiono et al., 2012 (93)</td>
<td>N = 62 >30% stenosis</td>
<td>Occlusive TD-OCT</td>
<td><0.75</td>
<td><1.91 mm²</td>
<td>80.6%</td>
<td>92.3%</td>
<td>93.5%</td>
<td>77.4%</td>
</tr>
</tbody>
</table>

FD-OCT = frequency domain optical coherence tomography; FFR = fractional flow reserve; MLA = minimum lumen area; OCT = optical coherence tomography; TD-OCT = time domain optical coherence tomography.
previously poorly understood. In-stent restenosis was previously thought to be a condition mainly of bare-metal stents that regressed with time (60). However, more recently, evidence has emerged of late in-stent restenosis of both bare-metal and drug-eluting stents presenting as ACS (61,62). An early OCT study of in-stent restenosis in bare-metal stents showed that the initial neointimal proliferation after stent implantation could transform into lipid-rich plaque with evidence of intimal disruption and thrombus (63). TCFAs were identified in more than one-half of drug-eluting stent restenosis cases, and features of neoatherosclerosis were more common in those presenting with unstable angina than those patients with stable symptoms (64). In 1 serial OCT study of drug-eluting stents, 30.3% of those with homogenous neointimal proliferation had evidence of transformation to neoatherosclerosis (65). On multivariate analysis, stent age >4 years, chronic kidney disease (CKD), and smoking were predictors for neoatherosclerosis on OCT (66). Neoatherosclerosis is also observed more often in patients with diabetes mellitus (DM), and more often in poorly controlled DM (67). Patients with neoatherosclerosis have a higher rate of target vessel revascularization and stent thrombosis (68).

SPONTANEOUS CORONARY ARTERY DISSECTION. OCT can also provide a valuable insight into less common causes of ACS, such as spontaneous coronary artery dissection (SCAD) and coronary artery spasm. SCAD is a non-traumatic, spontaneous separation of the vessel wall by intramural hemorrhage, with creation of a false lumen, and may be easily missed on angiography (69). OCT is advocated as the gold-standard intravascular imaging modality in detecting SCAD because it can visualize the false lumen, intimal rupture, and intramural thrombus more accurately than IVUS (70). In 17 patients suspected of having SCAD, OCT confirmed its presence in 11 (64.7%), showing a double lumen or intramural hemorrhage in all patients, whereas angiography only showed an intimal flap in 3 patients (71). SCAD was observed in 4% of cases in a recent ACS cohort, and was more common in women than men (72). A diagnostic algorithm has been proposed if there is a high index of suspicion of SCAD (for example, in a young woman without traditional risk factors presenting with ACS), advocating the use of OCT or IVUS to confirm the diagnosis (69).

CORONARY ARTERY SPASM. Coronary artery spasm (mediated by endothelial dysfunction and atheroma that is not visible on conventional angiography) can also result in ACS, and 1 OCT study of 20 patients with coronary vasospasm (confirmed by provocation testing) showed intraluminal thrombus and intimal erosion in a significant proportion of cases (33.3% and 10%, respectively) (73). One study showed that patients with coronary artery spasm after an acetylcholine provocation test were more likely to have homogenous intimal thickening than those without coronary spasm (74). However, another OCT study suggested that contraction of the media facilitated intimal gathering without intimal thickening during coronary artery spasm (75). Further research is needed into the pathophysiology of coronary artery spasm, and OCT is ideally placed to identify the role of plaque erosion and changes in the intima during spasm.

OCT PLAQUE CHARACTERIZATION IN VULNERABLE PATIENTS

DIABETES MELLITUS. Patients with DM are at increased risk of adverse events after ACS (hazard ratio for cardiac death at 1 year was 3.33, 95% confidence interval: 1.3 to 8.6, p = 0.008) (76). However, studies have shown a similar prevalence of TCFA in DM and non-DM patients undergoing angioplasty for any reason (29% in patients with DM vs. 36% in those without, p = 0.76) (77), and in patients with unstable angina (42.9% vs. 52.3%, p = 0.34) (78). In an OCT substudy of 72 patients with ACS, patients with DM had smaller lipid pools, greater extent of calcification, and a greater frequency of superficial calcified nodules, with no difference in the prevalence of TCFA between groups (79). Features of plaque vulnerability are, however, associated with glycemic control in diabetic patients, with patients with a glycated hemoglobin level ≥8% found to have a larger lipid pool, thinner fibrous cap, and greater prevalence of TCFA in nonculprit lesions (40).

RENAI DYSFUNCTION. Ischemic heart disease is the leading cause of death in patients with CKD (80). In a study of 287 patients enrolled in the Massachusetts General Hospital OCT Registry (26.5% with ACS), patients with CKD had a larger lipid index compared with those without (average lipid arc multiplied by lipid length: 1,716.1 ± 1,116.2 mm vs. 1,248.4 ± 782.8 mm, p = 0.009) (81). Plaque disruption was more frequently found in the CKD than the non-CKD group (13.5% vs. 5.5%, p = 0.049), but there were no differences in fibrous cap thickness between the groups (81).

CARDIAC ALLOGRAFT VASCULOPATHY. OCT has been used in patients with cardiac transplants to identify the characteristics of cardiac allograft vasculopathy. Patients with high-grade rejection are more likely than those with mild/no rejection to have thicker
intima (0.34 mm vs. 0.15 mm) in the proximal coronary artery segment, \(p = 0.005\), higher prevalence of macrophages (44% vs. 15%, \(p = 0.05\)) and a higher prevalence of intimal microchannels (46% vs. 11%, \(p = 0.02\)) on OCT (82). Intimal thickness as measured by OCT increases with time since transplantation (83), and OCT enables the identification of early features of cardiac allograft vasculopathy before development of angiographic features (84). Presence of vulnerable plaque features such as TCFA and macrophage infiltration increases with time from transplantation, and complex lesions such as intimal laceration and plaque rupture are also more prevalent (85).

LIMITATIONS OF OCT

A major limitation of OCT is its requirement for a blood-free field, necessitating flushing with either saline or contrast during image acquisition. Any contamination with blood during pullback results in loss of image data due to backscattering. Differentiation of calcium and lipid pool is more challenging than with IVUS, as both give low-attenuation signals (86). Moreover, the limited ranging depth of OCT (5 to 6 mm) means that imaging of the left main stem and vein grafts is limited (13), and calculation of plaque volume may be inaccurate (7). Poor penetration of light through lipid-rich tissue also limits its use in quantifying certain plaque components. Imaging artifacts plague up to a third of OCT images and thrombus obscures the morphology of the underlying lesion. Plaque analysis of OCT images for features of vulnerability is currently performed on a frame-by-frame basis and is therefore time consuming and not feasible in real time in the catheter laboratory, although automated processes for luminal border detection and plaque composition appear promising (87).

CONCLUSIONS

The detailed spatial resolution provided by OCT has allowed detailed in vivo correlation of those histopathological features thought to underlie plaque vulnerability. This has led to greater insight into the prevalence of vulnerable plaques in patients presenting with ACS, particularly in nonculprit vessels. Although there is lack of clinical data to guide the management of vulnerable lesions, a greater understanding of their natural history and temporal response to pharmacological or invasive interventions may help to deepen the understanding of ACS pathophysiology.

REPRINT REQUESTS AND CORRESPONDENCE: Dr. Vijay Kunadian, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Third Floor William Leech Building, Newcastle upon Tyne NE2 4HH, United Kingdom. E-mail: vijay.kunadian@newcastle.ac.uk.

REFERENCES

57. Bourantas CV, Papafaklis MI, Lakkas L, et al. Fusion of optical coherence tomographic and angiographic data for more accurate evaluation of

