We appreciate the interest of Dr. Habis and colleagues in our study (1) and their contribution to this research area.

In response to their first issue, there is indeed a difference in the elliptic shape of the left ventricular outflow tract (LVOT) between systole and diastole by multidetector computed tomography (MDCT). Although this shape change is statistically significant, the clinical significance of the difference is modest and would rarely change the grading of aortic stenosis (AS) severity by MDCT. Indeed, in our study the timing of LVOT planimetry between systole and diastole (AS) severity by MDCT. Indeed, in our study the timing of LVOT planimetry between systole and diastole (AS) severity by MDCT. Indeed, in our study the timing of LVOT planimetry between systole and diastole (AS) severity by MDCT. Indeed, in our study the timing of LVOT planimetry between systole and diastole grate importance of planimetered GOA on survival in patients with AS, we agree with Habis and colleagues that noncontrast MDCT has a major role in assessing the severity of calcified AS, by measuring aortic valve calcium load, independently of Doppler data and de

Planimetry of aortic valve area, as emphasized by Dr. Habis and colleagues, measures the geometric orifice area (GOA), not the effective orifice area (EOA), so differences between methods are expected. We agree that the theoretical interest of planimetered GOA by MDCT is linked to the hypothesis that MDCT-planimetered GOA may have superior reproducibility and reliability. Although the seminal work on CT planimetry was encouraging from this point of view, clinical practice studies such as ours are less optimistic about the method. We indeed found a significant correlation between all continuity EOA and planimetered GOA ($r = 0.57, p < 0.0001$ (1); however, the variability remained too high to be clinically useful. Furthermore, variability between GOA and EOA changes according to AS severity, with “GOA almost equal to EOA in mild AS but significantly greater in severe AS” (4). We therefore believe that the main indication of MDCT in regard to AS severity assessment is in patients with poor acoustic windows, for planimetry of LVOT and calculation of continuity EOA. This approach is valid as long as the cutoff values used to assess severe AS account for the MDCT method's specific higher thresholds (1). Importantly, we do agree with Habis and colleagues that noncontrast MDCT has a major role in assessing the severity of calcified AS, by measuring aortic valve calcium load, independently of Doppler data and defining excess risk of mortality (5). Thus, we share the confidence of Habis and colleagues that MDCT is promised an essential role in evaluating patients with AS.

REFERENCES

REPLY: Comparison of Echocardiography and CT for the Assessment of Aortic Stenosis Valve Area

Marie-Annick Clavel, DVM, PhD*
Joseph Malouf, MD
David Messika-Zeitoun, MD, PhD
Phillip A. Araoz, MD
Hector I. Michelena, MD
Maurice Enriquez-Sarano, MD
*Division of Cardiovascular Diseases and Internal Medicine
Mayo Clinic
200 First Street Southwest
Rochester, Minnesota 55905
E-mail: clavel.marieannick@mayo.edu

Please note: The authors have reported that they have no relationships relevant to the contents of this paper to disclose.

REFERENCES